
NEW LEVEL OF PERFORMANCE FOR PERMANENT GAS ANALYSIS KA CONFIG 3—TRACE PERMANENTS GAS ANALYSIS IN MULTIPLE GAS MA-

SOLUTION FEATURES

Performance :

- ♦ Down to < 15 ppb LOD based on Epd* technology (< 5 ppb with eLOD)
- ♦ Linearity: < 1%

Robustness

- ♦ µInProve* GC valve
- ♦ iMov* GC platform
- ♦ Solid state Epd* sensor

• Optional automated multi-stream analysis

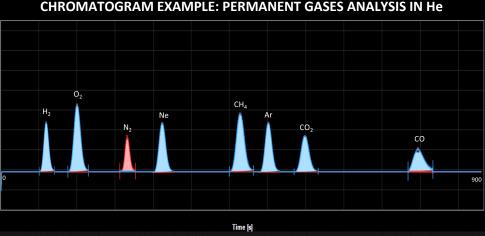
- ◆ Analyse multiple streams sequentially
- ◆ High sample integrity with iS⁴ sample stream selection system

Full data analysis and reporting software

KEY SPECIFICATIONS

- ♦ Impurities: H₂. O₂. N₂, CH₄, CO₂, CO₂, Ar, Ne
- ♦ Measurement range: 10 ppm to 100 ppm
- ♦ Matrix: H₂, O₂, N₂, Ar, He, Air, CH4,CO,CO₂
- ◆ LDL: < 15 ppb

TYPICAL APPLICATIONS


- ♦ Bottling centre
- ♦ Filling station
- Quality control
- ♦ R&D

Customers are requiring more stringent control of gas quality. The level of impurities in gases is now expected to be well below 50 ppb for many applications.

Technologies like Discharge Ionisation Detectors and there variants only offer limits of detection in the range of 50 ppb which is now insufficient.

With its ultra sensitive Epd detector, high quality components, advanced signal processing and unsurpassed analytical performance, this **KA Solution** GC is the perfect tool for gas quality certification.

*Patent pending

CHROMATOGRAM EXAMPLE: PERMANENT GASES ANALYSIS IN He

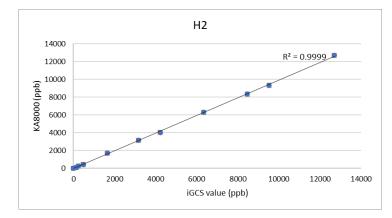
APPLICATION PERFORMANCE HIGHLIGHTS

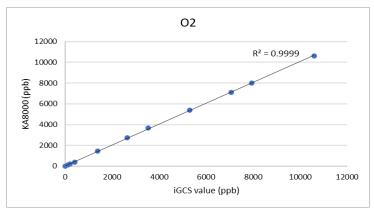
In the field of chromatography, most GC integrators use LOD to define the sensitivity of the GC system. The LOD is typically calculated using 3 times the signal to noise (SNR) using a peak of relatively high intensity. This is a good starting point to compare detector performance but it ignores many factors associated with the chromatographic method itself.

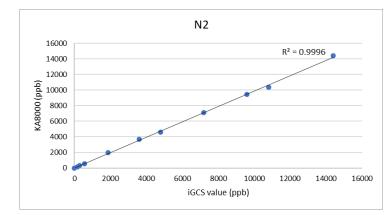
We have over 30 years of experience in the measurement of ultra-trace analytes. We know very well that just using a LOD calculation to measure the performance is not robust. At trace level, you may lose the impurities inside the column. So the real limit of detection can be higher. Also, baseline shape as well as matrix interference, which causes drift, dramatically impact the performance.

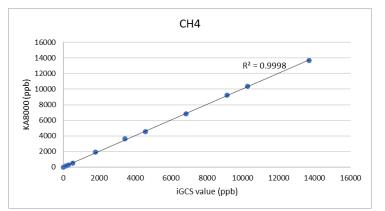
For that reason, we use both LOD and MDL. The MDL is the **method detection limit**. Instead of purely looking at the signal intensity vs the detector noise, this method involves injecting consecutively a sample with a known precise concentration close to the expected limit of detection. As a rule of thumb, this test is typically done 3 times above the expected limit of detection. This test is more robust when compare to standard LOD, because it takes into account all factors.

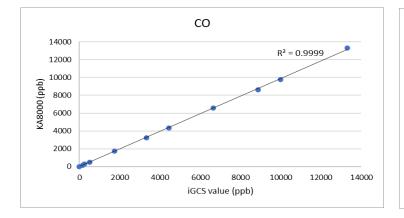
Here, we are providing both, the LOD and MDL. The tests were done using our iGCS dilution system. So always be careful when looking at LOD. Not everybody use the same definition.

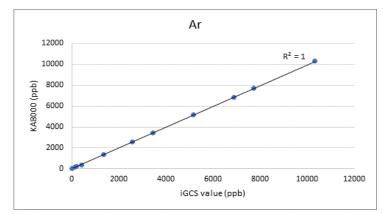

	Analysis #	H2 [PPB]	O2 [PPB]	N2 [PPB]	CH4 [PPB]	CO [PPB]	CO2 [PPB]	Ar [PPB]	Ne [PPB]
	1	56.0	32.0	58.0	37.0	46.0	44.0	49.0	55.0
	2	63.0	35.0	68.0	35.0	74.0	64.0	45.0	51.0
	3	50.0	23.0	47.0	40.0	47.0	41.0	51.0	49.0
	4	63.0	40.0	59.0	52.0	44.0	50.0	48.0	56.0
	5	69.0	37.0	70.0	40.0	47.0	56.0	44.0	51.0
	6	62.0	42.0	50.0	57.0	70.0	32.0	52.0	48.0
	7	66.0	30.0	51.0	41.0	60.0	40.0	46.0	52.0
	8	63.0	40.0	68.0	40.0	47.0	44.0	44.0	50.0
	9	62.0	42.0	59.0	52.0	60.0	50.0	52.0	49.0
	10	69.0	38.0	51.0	55.0	44.0	41.0	49.0	23.0
Without	σ	5.7	6.1	8.4	8.1	11.2	9.1	3.1	9.3
eLOD	MDL	17.2	18.2	25.1	24.4	33.7	27.3	9.4	27.9
elob	LOD	5	6	3	8	10	9	10	9
With	σ	0.8	0.3	0.2	1.5	2.2	1.1	2.2	1.1
eLOD	MDL	2.3	1.0	0.5	4.6	6.7	3.4	6.7	3.4
elob	LOD	0.8	0.4	0.2	1.6	2.3	1.5	2.3	1.5

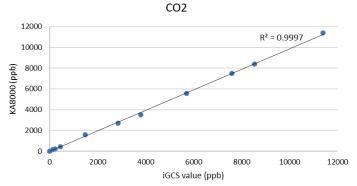

LIMIT OF DETECTION (LOD) AND METHOD LIMIT OF DETECTION (MDL)

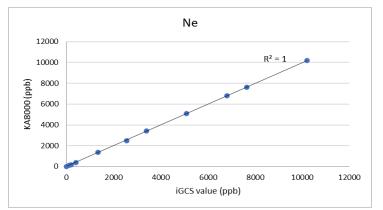

LINEARITY DATA


H2 [P	PB]	O2 [P	PB]	N2 (P	PB]	CH4 [I	PPB]	CO [P	PB]	CO2 [I	PPB]	Ar [P	PPB]	Ne [l	PPB]
Reference	Reading														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
151	121	126	145	171	122	162	175	157	124	135	153	122	151	121	142
249	249	207	223	282	307	268	266	260	275	223	219	201	208	200	189
488	443	407	388	553	519	526	505	511	500	438	434	396	371	392	381
1656	1718	1382	1443	1877	1954	1786	1934	1734	1711	1486	1571	1343	1341	1330	1352
3174	3152	2649	2755	3599	3700	3425	3640	3324	3252	2849	2697	2574	2556	2550	2501
4233	4044	3533	3665	4800	4603	4566	4571	4433	4340	3800	3515	3433	3405	3400	3425
6350	6301	5300	5402	7200	7122	6850	6827	6650	6592	5700	5589	5150	5165	5100	5075
8466	8360	7066	7117	9600	9470	9133	9227	8867	8648	7600	7494	6867	6816	6800	6815
9525	9328	7950	7984	10800	10369	10275	10389	9975	9783	8550	8413	7725	7701	7650	7612
12700	12700	10600	10600	14400	14400	13700	13700	13300	13300	11400	11400	10300	10300	10200	10200


LINEARITY CHART EXAMPLES







www.asdevices.com

info@asdevices.com

©Copyright 2020 Analytical Sensing Devices

MOV THE FIRST MODULAR AND CONFIGURABLE GC

THE IMOV HAS BEEN DESIGNED TO BE MODULAR AND EASY TO CONFIGURE. WITH ITS INNOVATIVE MODULAR THERMAL^{*} ZONE AND BROAD OFFERING OF STANDARD MODULES, IT ONLY TAKES A FEW HOURS TO FULLY CONFIGURE THE GC.

FEATURES

- Plug & Play
 - Configure a full GC in just a few hours
 - No mechanical work required, just plug standard modules
- Modular thermal zone concept*
 - Up to 6 isothermal zones for columns or valves
 - 1 convection ramping oven
 - Up to 2 Low Thermal Mass Modules
- Access all key components from the front door
- Up to 6 chromatographic valves
- Up to 5 purged Electronic Pressure Controllers
- Up to 3 gas detectors: Epd**, ePID*, eDID**, TCD, FID, others
- Designed for 19" rackmount or benchtop
- Based on ASDSense Embedded robust GC software
- I/O modules : Isolated 4-20 mA outputs, Relay board, RS-232, Ethernet, Modbus
- Accessories
 - ♦ GC Inlet
 - Autosampler
 - Sample Concentration System (iGCS)
 - External sampling system control (iS⁴)

ASDSENSE PROCESS GC SOFTWARE EASE OF USE, ROBUSTNESS, INNOVATIVE


THE ASDSense IS A POWERFUL GC SOFTWARE THAT RUNS ON ALL OUR OEM GC PLATFORM. IT HAS BEEN DESIGNED TO BE ROBUST FOR 24/7 PROCESS USE WITH LABORATORY LIKE DATA ANALYSIS FEATURES. ITS INTUITIVE AND FEATURE RICH SUCH AS MULTIPLE INNOVATIVE ADVANCED SIGNAL PROCESSING ALGORITHM, MAKES THE MOST POWERFUL AND VER-SATILE PROCESS GC SOFTWARE.

FEATURES

- Based on Industrial Real-Time Operating System
- Designed based on software redundancy for reliability
- Advanced signal processing
 - ELOD (Enhanced LOD) algorithm
 - Peak remodeling
 - Baseline cancellation
- Multi-methods capability with automatic sampling system synchronisation
- Data analysis
 - Data and chromatogram review
 - Statistical analysis
- Multiple calibration models available
 - Linear and quadratic
 - Multi-points calibration
- Password protected user access (3 levels)
- IIoT Ready
- Remote control
- Support MQTT IIoT protocol for M2M communication
- Digital relays, 4-20 mA, RS-232, Ethernet, Modbus

Real-Time a	inalysis 🧳	Method o	development d	Analysis cfg	N N	ethod cfg	🖬 Instrume	int cfg	🔨 System cfg	🖪 Ala		.09	About	
Sql Table Disc	overy Dsp		lule Flow Rela	y Input Rampir	g Ov	en Iso Zone	Valves	8R						
T&R Zone con	figuration													
Zone 1														
Sample flow	v [ml/min]		T&R default ter	mp. [C]						TEPT	emperature	nrofilo		
25	25.0		- 30.0 - 31	0.0						300 -	emperature	prome		
Samp Inter Sample terr			X TRAP		-> Sa 0	riple utlet				250				
	32.3									200				
	_		10 3				& டீ	i → S plir		150-				
			000				Split flo		in]					
Quit	-		1	œ <u>, </u>	atrix Ve		0	0.0						
			00			,I,		- To C	Column					
Carrier flow			Valve temp. [C]		T 0 1	R Valve defa	ult nonline:			0				
	25.0		125 124.	8				Isolatic	on 👻					
T&R Valve ten						r&R Valve e				T&R V	alve profile			
Time [sec] 1 0	Action	Un v °c	it Setpoint 25	[°c] Blower Sp. [70		Time (s 1 0		Action ampling						
2 130	Ramping	°c/min	20	0		2 120	_	olation						
3 275	Hold	 C/min ℃c 	250	0		2 120 3 400	_	elease	-					
3 275 4 1700		v °c				3 400 4 1700			-					
	Cooling		20	100		4 1700	Is	olation	•					
5 2000	Hold	- °c	25	25										
											÷ 5	00		2000
Add line	Delete sel	ected		Save tabl		Add line	Delete se	lected	Save table					>
				-		d D a								

Trap and Release menu

Flow diagnostic menu

info@asdevices.com

©Copyright 2020 Analytical Sensing Devices

ScPdd^{MGT}SCALABLE ENHANCED PLASMA DISCHARGE DETECTOR A NEW SENSING TECHNOLOGY AND TOOLSET FOR CHROMATOGRAPHY

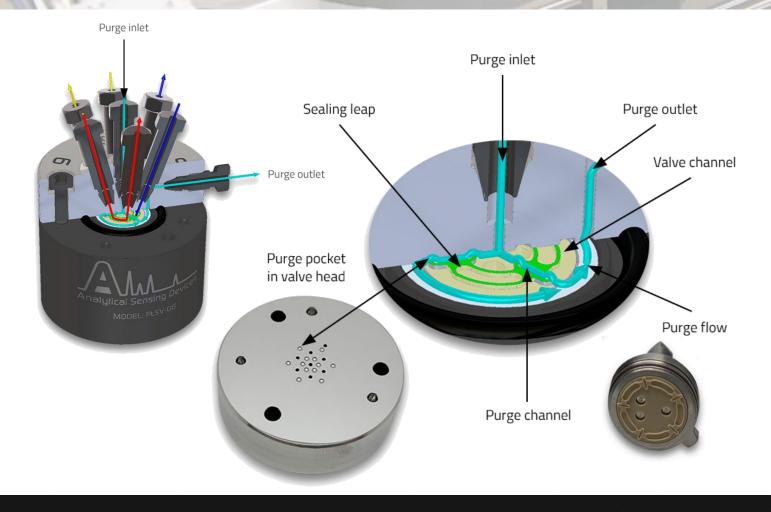
THE SEPDD IS A SCALABLE EPD* BASED DETECTOR ARCHITECTURE. IT IS NOT JUST A GC DETECTOR, IT'S A COMPLETE SYS-TEM. AVAILABLE IN 3 CONFIGURATIONS (DUO, TWIN AND QUATTRO), OPTIMISE AND SIMPLIFY YOUR CHROMATOGRAPHY LIKE YOU NEVER DID BEFORE. WITH THE CPM PLATFORM, TURN THE SEPDD INTO A FULL FEATURE COST-EFFECTIVE GC SOLUTION.

FEATURES

- Up to 2 detectors for the price of one
 - SePdd available in Duo, Quattro and Twin versions
- Epd technology*
 - Discharge cell available in metal or ceramic
 - Unique compound electrode* that can withstand high temperature, high pressure and sub-atmospheric pressure
 - Plasma stabilisation and electron injection electrodes*
- Optimised for packed, µPacked and Capillary columns

- Using configurable optical wavelength module
- Integrate it on any existing GC platform
- ppt to % measurement range
- Alternative to DID, PDHID, ECD, FPD, PFPD, SCD, FID, TCD, Mass Spectrometer and former PED technologies
- Compatible with argon, helium, nitrogen, oxygen, CO₂ and hydrogen carrier

PURGED LIP SEALING VALVE THE MOST RELIABLE AND DURABLE VALVE


THE PLSV (PURGED LEAP SEALING VALVE) IS A DISRUPTIVE ANALYTICAL VALVE TECHNOLOGY THAT EXCEEDS THE LI-FETIME OF A DIAPHRAGM VALVE AND HAS THE CONSTANT PRESSURE DROP AND THE SIMPLICITY OF A CONICAL ROTA-RY VALVE.

BY DESIGN, IT IS ALSO IMPOSSIBLE FOR THIS VALVE TO DEVELOP A CROSS PORT LEAK. THIS NEW TECHNOLOGY IS BASED ON A REDUCED SEALING SURFACE AREA OFFERED BY THE VALVE'S INSERT THAT REPLACES THE TRADITIONAL ROTOR AND AN INNOVATIVE PURGE SYSTEM.

THIS REVOLUTIONARY TECHNOLOGY HAS BEEN DESIGNED TO MEET OUR MOST ELEVATED STANDARDS THAT WE DE-MAND FOR.

PLSV TECHNOLOGY FEATURES

- No leak Inboard/outboard and cross port leaks are impossible due to unique purge technology^{patent pending}
- Long life time Over 1 million actuations in UHP applications due to unique reduced surface area insert technology^{patent pending}
- Constant pressure drop No change in pressure/flow drop characteristic across temperature range and life span
- No dead volume Internal flow path contains no unswept volume
- Small footprint With the use of our electrical or pneumatic compact actuator, install multiple valves in a constrained space, replacing diaphragm valve in existing

SPECIFICATION	NS										
Analytical range	[ppm]				0-10 or 0-100						
Limit of detectio	on (3σ) [ppm]				0.015 ppm	or 0.5% range v	whichever is lar	ger			
Enhanced Limit	of detection (e	LOD) [ppm]			0.005 ppm	or 0.2% rangev	v hichever is lar	ger			
Linearity [%]						< 1%					
Repeatability (σ)) [%]					< 1% full scale	range				
Sensing technolo	ogy				Enha	inced Plasma De	etector (Epd)				
Chromatographi	ic valve					ulnprove P	LSV				
Carrier gas inlet	pressure requ	irement [PSIG]			90 5 to 15 Purified helium 5N 312 x 483 x 508						
Sample gas inlet	pressure requ	uirement [PSIG]								
Carrier gas type											
Dimension (H x \	W X D) [mm]										
Communication					RS-232, Ethernet, 4-20 mA outputs (optional)						
MATRIX	Не	Ar	H ₂	N ₂	02	CO	CO ₂	CH₄			
IMPURITIES											
H ₂	х	Х		Х	Х	Х	Х	х			
Ar	Х		х	х	х	Х	Х	x			
O ₂	Х	Х	х	Х		Х	Х	х			
N ₂	Х	Х	х		х	Х	Х	х			
CO	Х	Х	х	х	х		Х	х			
CO ₂	Х	Х	х	х	х	Х		х			
CH4	Х	Х	х	х	х	Х	Х				
Ne	Х		<u> </u>	<u> </u>							
ORDERIN	IG MODEL N	UMBER		IMPURITIES			MATRIX(ES)				
KA8000	D-CFG3-PACK1	-AAA	H ₂ , (O ₂ , N ₂ , CH ₄ , CO	, CO ₂	ŀ	le, Ar, H ₂ , N ₂ , O	l ₂			
KA8000	D-CFG3-PACK2	-AAA	H ₂ , O ₂ ,	H ₂ , O ₂ , N ₂ , CH ₄ , CO, CO ₂ , Ar, Ne He, Ar,							
						He, Ar, H ₂ , N ₂ , O ₂ , CO, CO ₂ , CH ₄					
KA8000	D-CFG3-PACK3	-AAA	H ₂ ,	O ₂ , N ₂ , CH ₄ , CO	, CO ₂	пе, Ar, r	$1_2, 1_2, 0_2, 0_2, 0_0, 0_0$	co_2, cn_4			

CHROMATOGRAPH WITH RECOMMENDED ACCESSORIES

