

Guide to the use of FAST-GC

What is FAST-GC?

FAST-GC is one of the highest potential techniques, already widely demonstrated in practice, that is spreading out especially in these years. How the name itself indicates, FAST-GC is a fast gascromatography, which is able to ten times reduce analysis time compared to the amount of time in conventional GC analysis. With FAST-GC you can get analysis only in 1-2 minutes by keeping a sufficient resolution for the separation of medium or medium-high complexity mixtures. In this way it is possible to increase the number of analysis made in a day, decreasing analytical costs, using cheaper columns and not wasting time!

Theorical notices.

The parameter that shows the separative power of a capillary column in the best way is the number of theoretical plates (N) of a column.

$$N = 5.54 \cdot \left(\frac{tr}{w50}\right)^2$$
; where : tr = retention time, w50 = Peak width calculated at mid height (1).

At equal credit of the internal diameter, the more a column is long, the more theoretical plates it will have and the greater its separative power will be. At equal merit of lenght the columns with a shorter internal diameter will have a greater separative power since the number of theoretical plates will increase by decreasing the internal diameter. Just to make it clear, a traditional column with an internal diameter equal to 0.25mm and a 25 meter lenght has 100000 theoretical plates; as it is shown in table 1, a FAST-GC column with a narrower internal diameter (100µm), is only 10 meters long and it has the same number of theoretical plates as traditional GC. This allows to keep the same separative power even though the column is shorter and allows to reduce analysis time.

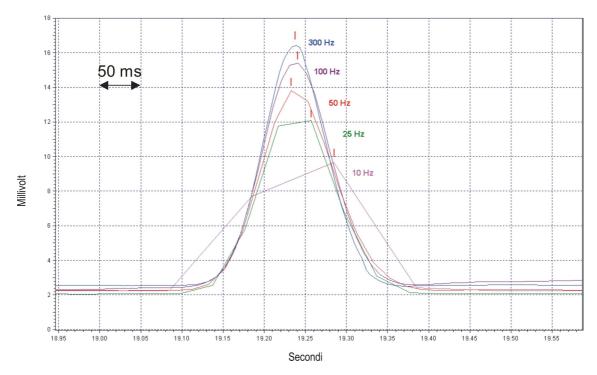
Columns for FAST-GC have very short internal diameters (50, 100µm usually), which means that even though they are short, they require a high pressure on the injector in order to obtain functional flows. Usually optimal flows that have to be used in FAST-GC (at normal conditions) are 0.5mL/min about (60cm/s @ 50°C (starting temperature of the GC's oven)) of gas in a column (see the table below on recommended flows). If hydrogen is used as carrier gas, there will be an advantage because, for it being less viscous that Helium, there will be the need of a lower pressure to reach the same flow in column. Hydrogen carrier gas allows to work with higher speeds without losing in a significant way efficiency terms of the column, allowing then to shorten up once more the analysis time. For these two reasons it is best to use Hydrogen as carrier gas in FAST-GC, even though the correct use of Helium as carrier gas brings to the same conclusions in efficiency terms.

What is needed to accomplish FAST-GC.

To accomplish FAST-GC you will only need:

- A short column with a short internal diameter (called "narrow-bore" columns). Typically a column of 10 m with an internal diameter of 0.10 mm is used.
- A gascromatographer able to carry out fast temperature rate, of 25°C/min and up, with a high frequency acquisition system (See Fig.1 on the effect of acquisition frequency on the peak shape) and able to manage relatively high pressures on the head of the column.

Website NEW : www.chromalytic.com.au E-mail : info@chromtech.net.au Tel: 03 9762 2034 . . . in AUSTRALIA



Internl Diameter	Lenght	Film Thickness	Theorical Plates (N)		
	0.5 m	0.05 µm	50000		
FOur	2.5 m 0.10 µm		50000		
50µm	5 m			100000	
		0.10 µm			
	Γ	0.10 µm	50000		
100µm	5 m	0.20 µm	50000		
•	10 m	0.10 µm	100000		

Table 1. These are the dimensions of the columns that can be found in the catalogue. For each column it is reported the number of theorical plates (N) calculated with the formula written on the previous page (1). We advise not to use 100 micron i.d. columns longer than 10 m and 50 microns i.d. columns because the pressure needed it will be too high on the today strumentation!

Effect of the acquisition frequency on the shape of the peak and on the goodnes of integration

Figure 1. Effect of the acquisition frequency on the peak's shape. With these kinds of narrow peaks like the ones of FAST-GC (from 0.5 to 2 s) it is necessary to acquire the signal with high frequencies in order to have a correct peak shape and to be able to be adequately integrated. Achievement frequencies of 50 Hz are acceptable, frequencies of 100 Hz are optimal for most cases.

Guidelines for the Use of FAST-GC

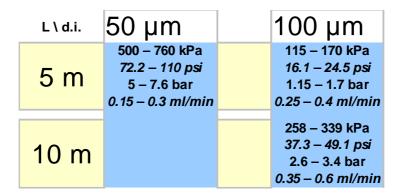
Conventional GC	FAST-GC
<u>Column:</u>	<u>Column:</u>
usually columns with internal diameters of 0.25/0.32 mm with lenghts of 25, 30, 50m.	column with internal diameters of 0.05/0.10mm and lenghts of 5, 10m.
Temperature Rates:	Temperature Rates:
1 – 20 °C/min	20 – 60 °C/min
Injection:	Injection:
with normal injection techniques it is possible to inject modest quantities, for example 1µl of a diluted solution with a split ratio of 1:20, 1:50.	the injected quantity has to be at least 10 times less than traditional GC. Usually the split ratio that are used are greater than 1:100 with solutions that are strongly diluted (< 100 ppm). (A new injector is in process of developement to allow direct injections on narrow-bore columns of a sample as liquid in quantity of the order of nanoliters!) Go to <u>www.mega.mi.it</u> to see the news of this revolutionary injector.
Carrier Gas:	Carrier Gas:
	-
<u>Peak Width:</u>	Peak Width:
2 – 5 s	0.5 – 2 s
Detector:	Detector:
any type of detector can be used.	any type of detector can be used. It is necessary that the acquisition frequency of the detector is a bit high, seen the reduced width of the peak. Values > 50 Hz (achievement frequency of the detector) are recommended. (See fig.1).
<u>Analysis Time:</u>	Analysis Time:
20 – 60 min	1 – 10 min
Table 2. The table shows the foundamental analysis parameter	eters Conventional GC VS FAST-GC.

Website NEW : www.chromalytic.com.au E-mail : info@chromtech.net.au Tel: 03 9762 2034 . . . in AUSTRALIA

Australian Distributors

Importers & Manufacurers 12/13

HROMalytic +61(0)3 9762 2034



Recommended Pressures and Flows

HYDROGEN Carrier Gas (40 – 80 cm/s)					
L \ d.i.	50 µm 100 µm				
5 m	300 – 630 kPa 43 – 91 psi 3 – 6.3 bar 0.15 – 0.4 ml/min		68 – 140 kPa 9.9 – 20.2 psi 0.68 – 1.4 bar 0.25 – 0.6 ml/min		
10 m			140 – 296 kPa 20.2 – 43 psi 1.4 – 2.95 bar 0.3 – 0.9 ml/min		

HELIUM Carrier Gas (32 – 45 cm/s)

Tables 3,4. These two tables illustrate some optimal flow and pressure indications that can be used for the treatment of FAST-GC columns of the illustrated dimensions. These conditions have been calculated with a temperature of 50°C (typical starting temperature) and at P outlet atmospheric conditions (if treated with a mass spectrometer, the indications can be held as a good starting point especially for the flows to use).

Visit <u>www.mega.mi.it</u> Support-Download section, to download the complete table for Pressure-Flows!

Website NEW : www.chromalytic.com.au E-mail : info@chromtech.net.au Tel: 03 9762 2034 . . . in AUSTRALIA

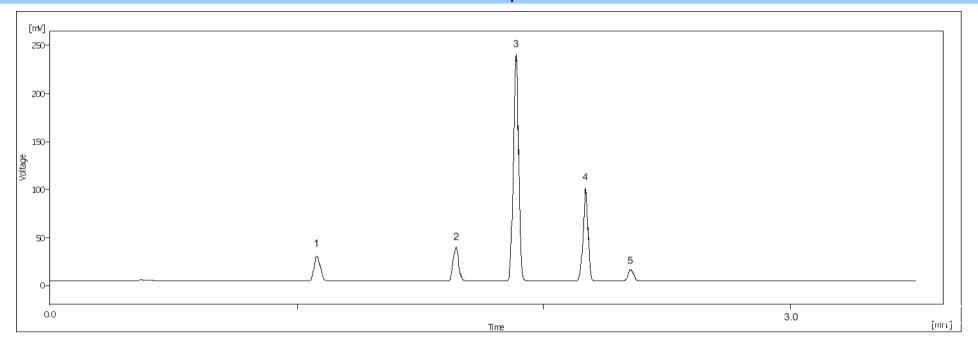
MEGA stationary phases available in FAST-GC.

In FAST-GC, the choice of the stationary phase is even more important than in traditional GC. In facts, where the shortening of analysis time produces a loss in resolution terms, the selectivity of the stationary phase can intervene to separate critical couples! This is the reason why MEGA has the widest choice of FAST-GC columns with phases that don't have any competition equivalent on the market!

Stationary Phase	Composition	Notes
MEGA – 1 FAST	100% Methyl Polysiloxane (Apolar)	
MEGA – 10 FAST	100% Cianopropil Polisilossano (High Polarity)	
MEGA - 101 FAST	100% Methyl Polysiloxane (Apolar)	
MEGA – 13 FAST	13% Phenyl, 87% Methyl Polysiloxane (Intermediate Polarity)	
MEGA – 17 FAST	50% Phenyl, 50% Methyl Polysiloxane (Mid to High Polarity)	
MEGA – 1701 FAST	7% Cyanopropyl, 7% Phenyl, 86% Methyl Polysiloxane (Intermediate Polarity)	
MEGA – 20 FAST	20% Phenyl, 80% Methyl Polysiloxane (Intermediate Polarity)	
MEGA – 200 FAST	Trifluoropropyl Methyl Polysiloxane (High Polarity)	
MEGA – 225 FAST	25% Cyanopropyl, 25% Phenyl, 50% Methyl Polysiloxane (Mid to High Polarity)	
MEGA – 5 FAST	- 5 FAST 5% Phenyl, 95% Methyl Polysiloxane (Low Polarity)	
MEGA – 50 FAST	50% Cyanopropyl, 50% Methyl Polysiloxane (Mid to High Polarity)	
MEGA – 624 FAST	3.5% Cyanopropyl, 3.5% Phenyl, 93% Methyl Polysiloxane (Intermediate)	
MEGA – ACID FAST	Polyethylenglycol (PEG) Acid (High Polarity)	
MEGA – PLUS FAST	Copolimer Polyethylenglycol (PEG) + Methyl Polysiloxane (Mid to High Polarity)	No Equivalents
MEGA – JXR FAST	100% Methyl Polysiloxane (Apolar)	
MEGA – PS255 FAST	1% Vinyl, 99% Methyl Polysiloxane (Apolar)	
MEGA – PS264 FAST	GA – PS264 FAST 5.8% Phenyl, 0.2% Vinyl, 94% Methyl Polysiloxane (Medium-Low Polarity)	
MEGA – SE30 FAST	A – SE30 FAST 100% Methyl Polysiloxane (Apolar)	
MEGA – SE54 FAST	5% Phenyl, 1% Vinyl, 94% Methyl Polysiloxane (Low Polarity)	
MEGA – WAX FAST	Polyethylenglycol (PEG) (High Polarity)	Available for High Temeperatures (300°C!).

Visit <u>www.mega.mi.it</u> to discover online our complet catalog, new products and all the news from MEGA. You can require completely custom products for specific analytical problems!

MEGA allows you to send us your sample to try, completely free, the performances of FAST-GC directly on your separation! This service has not any add-costs also on the column price eventually purchased!



Website NEW : www.chromalytic.com.au E-mail : info@chromtech.net.au Tel: 03 9762 2034 . . . in AUSTRALIA

Residual Solvents – Head Space – USP 467 OVIs

Column

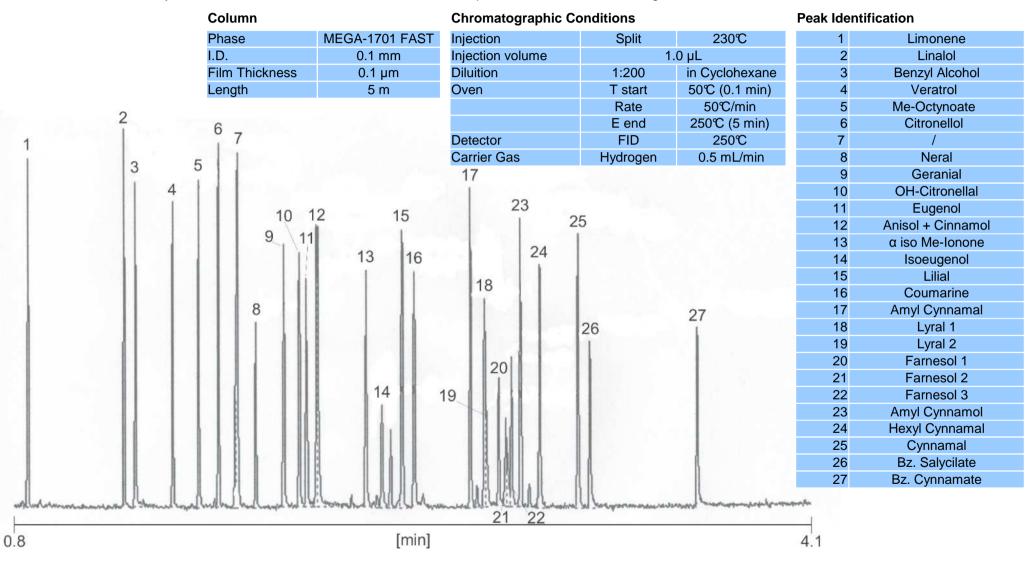
Phase	MEGA-624 FAST
I.D.	0.10 mm
Film Thickness	0.45 µm
Length	10 m

Chromatographic Conditions

Inlet	Split	250℃			
Split Ratio	1:1	1:100			
Injected Volume	0.5	mL			
HS	45 min	3 08			
Oven	T start	35°C			
	Rate	15℃/min			
	T end	100°C			
Detector	FID	250℃			
Carrier Gas	Hydrogen	0.4 mL/min			

Peak Identification

1	Dichloromethane
2	Chloroform
3	Benzene
4	Trichloroethylen
5	1,4 Dioxane


HS in Water	r
Carried out on DANI	ASTER GC

ALLERGENES

ALLERGENES

	Column		Chromatographic C	onditions		Peak Ident	ification
	Phase	MEGA-SE54 FAST	Injection	Split	230°C	1	Benzyl Alcohol
	I.D.	0.1 mm	Injection volume	1	.0 μL	2	Limonene
	Film Thickness	0.1 µm	Diluition	1:200	in Cyclohexane	3	Linalol
	Length	5 m	Oven	T start	50℃ (0.1 min)	4	Veratrol
				Rate	15℃/min	5	Me-Octynoate
				T end	250℃ (5 min)	6	Citronellol
			Detector	FID	250℃	7	Citral 1
1.0			Carrier Gas	Hydrogen	0.5 mL/min	8	Geraniol
3						9	Cynnamic Ald.
			00			10	Citral 2
1		20	26 28			11	Anysic Alcohol
4 5 6		10 1				12	OH-Citronellal
$\frac{2}{1}$		1 2	25			13	Cynnamic Alcohol
9		21	27	29		14	Eugenol
8 1) 14 17	1 17		1		15	Coumarine
	13 14 17	1 11	11 11			16	Isoeugenol
	15	1 11	11 11			17	α iso Me-Ionone
			24			18	α Me-Ionone
			1			19	Lilial
		23				20	Farnesol 1
			5	h l		21	Lyral 1 + Lyral 2
	16	8 22	10 11			22	Farnesol 1
	10		100 10			23	Farnesol 2
						24	Farnesol 3
						25	Amyl Cynnamal
				1		26	Hexyl Cynnamal
bound medle and belli	I have been Well	Mandan U.M.	JUL				Bz. Salycilate
1977 - 2017 - 2017 2017 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 201	0.01240.2020.2020.2020.2020.2020.2020.20					27	1-Ph-Decanone
		[min]			1.8		1-Ph-Decanone
		[nond]			1.0	29	Bz. Cynnamate

ALLERGENES

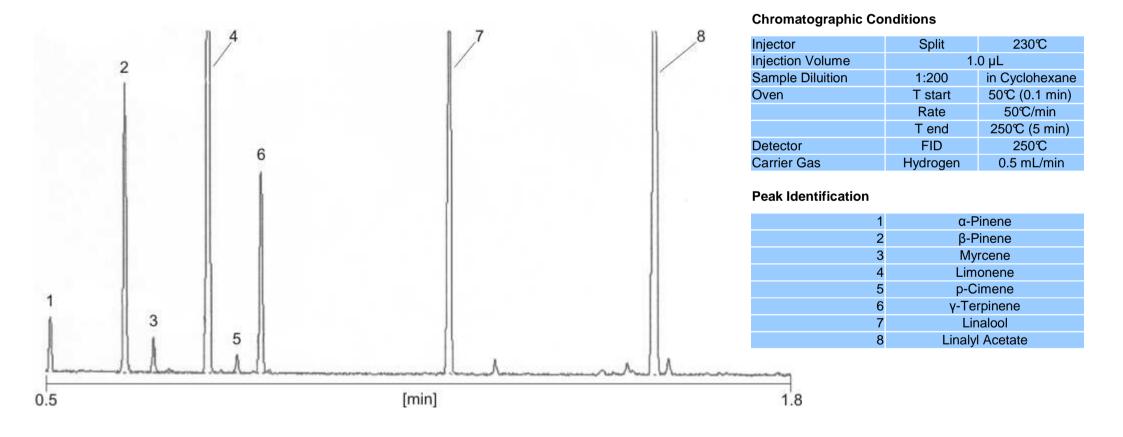
	Column		Chromatographic (Conditions		Peak Identi	fication
	Phase	MEGA-WAX FAST	Injection	Split	230°C	1	Limonene
	I.D.	0.1 mm	Injection volume	1	.0 μL	2	Linalol
	Film Thickness	0.1 µm	Diluition	1:200	in Cyclohexane	3	Me-Octynoate
	Length	5 m	Oven	T start	50℃ (0.1 min)	4	Neral
				Rate	50℃/min	5	Veratrol
				T end	230℃ (2 min)	6	Geranial
0			Detector	FID	250℃	7	/
2			Carrier Gas	Hydrogen	0.5 mL/min	8	α iso Me-Ionone
						9	Geraniol
	9					10	Alc. Benzyl
	10	40				11	a Me-Ionone
		18	3			12	OH-Citronellal
	3 7	12 10	24			13	Cynnamal
		15 16 17	27			14	Citronellal
	5 12	14 //21				15	Eugenol
		15				16	Amyl Cynnamal
		20				17	Anysol
	6 8		28			18	Cynnamol
	6 8					19	Farnesol 1
			2,5			20	Isoeugenol
			7			21	Hexyl Cynnamal
	4					22	Amyl Cynnamol
					29	23	1-Ph-10
	111		26	4	Ĭ	24	Coumarine
						25	Lyral 2
					1	26	/
						27	Bz. Benzoate
mhanna a second a		ALL A ALLING			1	28	Bz. Salycilate
	and the second second second second second	[min] 19	de sources and a second	the second se	1	29	Bz. Cynnamate

MEGA-1701 FAST

0.1 mm

0.1 µm

5 m

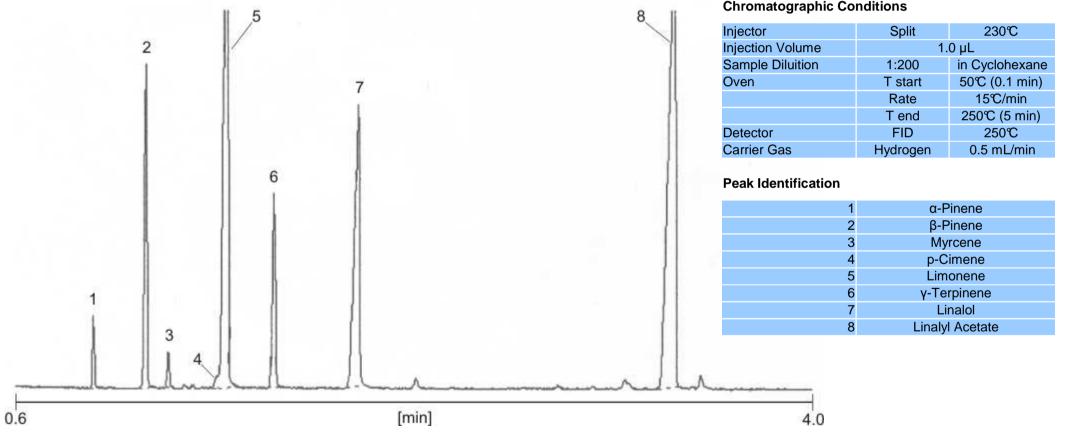

BERGAMOT

Column Phase

Film Thickness

I.D.

Length



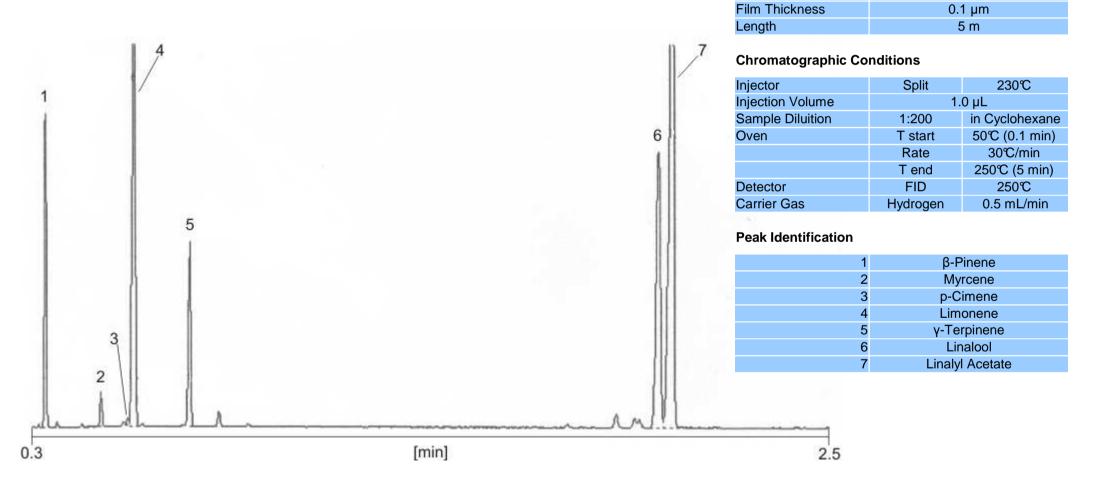
BERGAMOT

Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria, 9 - Torino

Column

Phase	MEGA-SE54 FAST
I.D.	0.1 mm
Film Thickness	0.1 μm
Length	5 m

Chromatographic Conditions

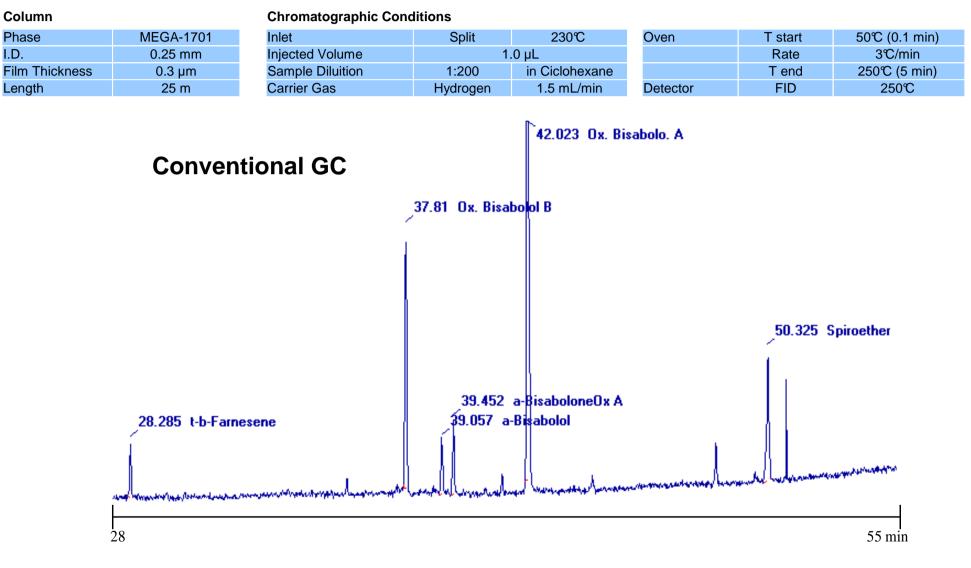

MEGA-WAX FAST

0.1 mm

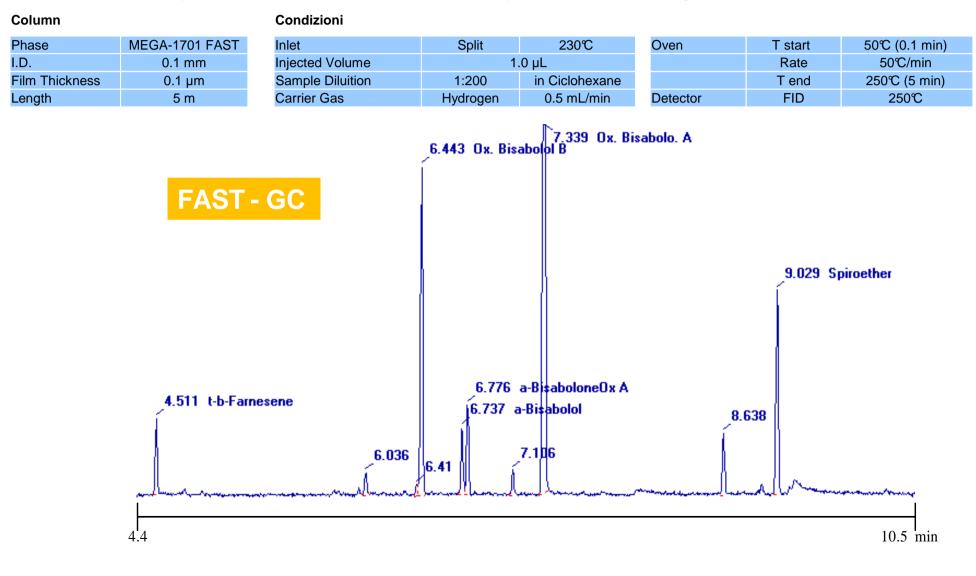
BERGAMOT

Column Phase

I.D.



CHAMOMILE – Convenzional GC vs FAST-GC



CHAMOMILE – Convenzional vs FAST-GC

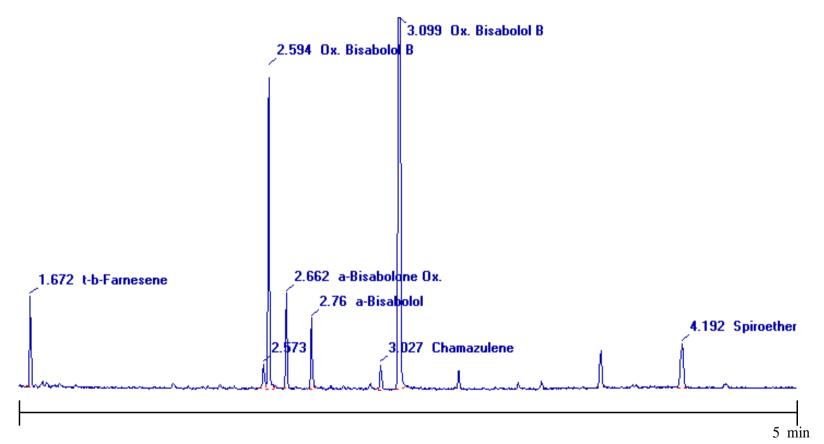
Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria, 9 – Torino

HROMalytic +61(0)3 9762 2034 Australian Distributors

ECH nology Pty Ltd Website NEW : www.chromalytic.com.au E-mail : info@chromtech.net.au Tel: 03 9762 2034 . . . in AUSTRALIA

Importers & Manufacurers

www.chromtech.net.au


12/13

CHAMOMILE

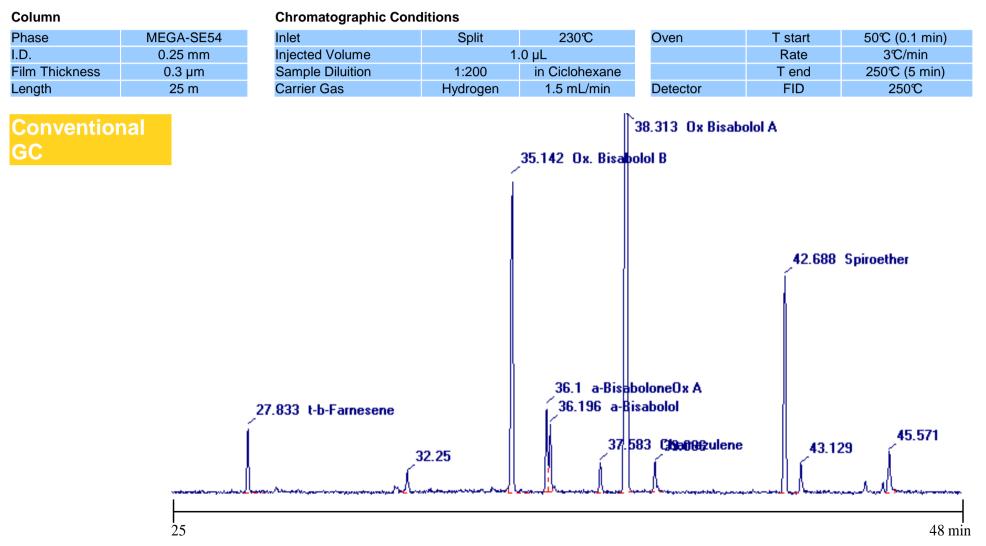
Column		Chromatographic Condition							
Phase	MEGA-WAX FAST	Inlet	Split	230°C	Oven	T start	50℃ (0.1 min)		
I.D.	0.1 mm	Injected Volume	1.0 μL			Rate	3℃/min		
Film Thickness	0.1 µm	Sample Diluition	1:200	in Ciclohexane		T end	250°C		
Length	5 m	Carrier Gas	Hydrogen	0.5 mL/min	Detector	FID	250℃		

1.

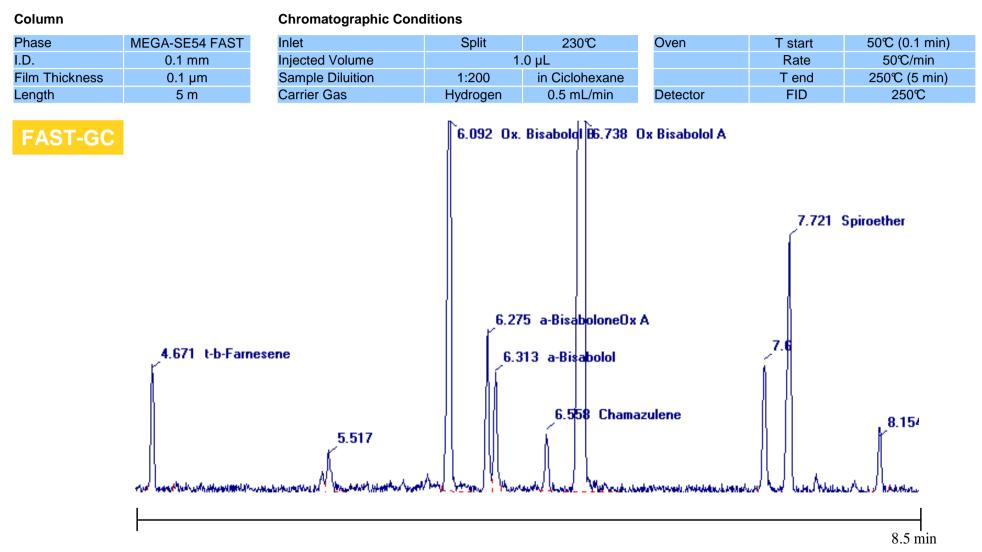
PESTICIDES

	Column		Chromatographic Co	onditions		Peak Ider	tification
	Phase	MEGA-1701 FAST	Injector	Split	230°C	1	α-HCH
	I.D.	0.1 mm	Injection Volume	1.	0 µL	2	γ-HCH
	Film Thickness	0.1 µm	Sample Diluition	1:200	in Cyclohexane	3	Heptachlor
	Length	5 m	Oven	T start	50℃ (0.1 min)	4	Chlorotalonil
				Rate	50℃/min	5	/
		1 12 13 14		T end	250℃ (5 min)	6	Parathion-Me
2 3	0		Detector	FID	250℃	7	Malathion
	j 1		Carrier Gas	Hydrogen	0.5 mL/min	8	Fenotrothion
	8					9	Parathion-Et
1 11			16			10	/
1 11	A 7.11		15			11	Fenitrothion
	4	11 1 1	× 1			12	Chlordane-Cis + Trans
1 11						13	Dieldrin
1 11	1 1					14	o,p'-DDT
1 11						15	β-Endosulfan
1 11						16	p,p'-DDT
1 11			1			17	/
1 11						18	Tetradifon
Langerround and her and me	6 10			17 10	18		
.8		[min]				4.0	

PESTICIDES


Column		Chromatographic Co	onditions		Peak Ider	ntification
Phase	MEGA-SE54 FAST	Injector	Split	230°C	1	α-HCH
I.D.	0.1 mm	Injection Volume	1	.0 μL	2	γ-HCH
Film Thickness	0.1 µm	Sample Diluition	1:200	in Cyclohexane	3	Chlorotalonil
Length	5 m	Oven	T start	50℃ (0.1 min)	4	Heptachlor
			Rate	15℃/min	5	Parathion-Me
			T end	250℃ (5 min)	6	Paraoxon-E
1 2 4	13	Detector	FID	250℃	7	Malathion
	11	Carrier Gas	Hydrogen	0.5 mL/min	8	Fenitrothion
	12				9	Parathion-Et
	12				10	/
					11	Chlordane-Trans
	11 1				12	Chlordane-Cis + α-End.
7	11 1	15			13	Dieldrin
3		1			14	β-Endosulfan
6 9	11 1				15	o,p'-DDT
					16	p,p'-DDT
		14 16			17	Tetradifon
5				17		
s sunanun zununne zunun zungenzen einen zu zu der der einen 3	min]	annan sunat kanananang Sah	Jan-Jacker, and a state of the second se	seel lique Manyahalan enga	4.5	

CHAMOMILE – Conventional GC vs FAST-GC



CHAMOMILE – Conventional GC vs FAST-GC

