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LC TROUBLESHOOTING

One of the most frequent times that 

we discover a problem with a liquid 

chromatography (LC) method is 

when we examine a data set 

following the analysis of a batch of 

samples. This month’s “LC 

Troubleshooting” looks at some data 

submitted by a reader who 

suspected that something wasn’t 

right with their results. These data 

give us a good example of how we 

can examine data for abnormalities 

and formulate some experiments to 

try to identify the problem source so 

we can correct the problem. I have 

somewhat obfuscated the details so 

that the reader and company remain 

anonymous. The sample comprises a 

pharmaceutical formulation that was 

being assayed for potency following 

a particular stress test. A single 

batch of product was divided into 12 

samples, which were then treated 

in the same manner. For analysis, 

two subsamples were weighed from 

each sample, diluted, and injected, 

for a total of 24 sample injections. 

The potency was determined by 

comparing the area response of each 

injection to the response of 

a reference standard. The method 

stipulates that if the two subsamples 

disagree by more than 1.0% in assay 

value, the source of disagreement 

must be investigated. The reader 

reported that normally these 

“duplicate” samples agree within 

0.5%.

The data I received are listed in 

the first two columns of Table 1. Each 

sample is numbered, and 

the associated letter identifies the 

subsample (for example, 1a and 

1b are subsamples of sample 1). I 

have noted the absolute difference 

between the two subsamples in the 

third column. The abnormality that 

triggered the reader’s inquiry was the 

1.41% difference between samples 4a 

and 4b. This difference exceeded the 

limit allowed by the method and 

required that the chemist perform an 

investigation to identify the source 

of the problem so that it could be 

corrected.

Initial Examination

When I try to solve a problem like this, 

I like to examine the data in several 

ways. Often I find that a table of data, 

such as that of Table 1, makes my 

eyes glaze over. I do much better with 

a graphic representation. To get an 

idea of how atypical the 

1.41% difference is, I constructed 

the frequency plot shown in Figure 1. 

Here I simplified the data set by 

“binning” the absolute differences into 

groups with 0.25% increments, so you 

can see, for example, that there were 

five samples in which the difference 

between injections was 0–0.25%. 

All the data points except the 1.41% 

value were <0.75% difference. 

The big gap between the 11 good 

sample pairs and the one bad one 

makes the problem pair seem like an 

obvious outlier. But is there any more 

quantitative measure of this? One 

simple technique to test for outliers 

is the Dixon’s Q -test. A test value is 

calculated as:

|suspect – nearest|/(largest – smallest)

[1]

For this example, |1.41 – 0.73|/(1.41 – 

0.07) = 0.51. The critical value of Q

for n ≥ 10 is 0.464 (1), meaning that 

any test value larger than the critical 

value is an outlier. Now we have 

some statistical support in stating 

that the difference in assay values 

for sample 4 is an outlier. As I look 

at the results of the Q -test, however, 

it looks to me like the 1.41 value isn’t 

very much of an outlier. I checked this 

by looking at different suspect values 

using the data set of Table 1, and it 

is easy to show that the critical value 

is exceeded only when the suspect 

value is >1.3%. This says to me that 

if the current data set is typical for this 

method, the requirement for 

differences of <1.0% may be a bit 

too tight. That is, a value >1.0% will 

trigger an investigation, but unless 

it is >1.3%, it is not likely that it can be 

proven an outlier with the Dixon’s Q -

test. Such limits should be set as part 

of the method validation, where large 

data sets are available and the normal 

variation of the method can be 

determined more easily than with the 

limited data available here.

Digging a Bit Deeper

Sometimes it is useful to examine 

the data for any trends that might 

be obvious. An easy way to make a 

first pass at this is to simply plot the 

assay values over time. In Figure 2, I 

have plotted the assay values in order 

for the 24 injections. There doesn’t 

seem to be any trend to larger or 

smaller values over the course of the 

analysis. The variability for the first 

12 injections seems to be larger than 

for the last 12, but these were run 

on two separate days, so it may be 

a day-to-day difference as much as 

anything. The overall variability in the 

data is shown at the bottom of Table 1 

with the percent relative standard 

deviation (%RSD) of only 0.5%. 

Considering that many autosamplers 

have %RSD in the 0.3–0.5% range 

using reference standards under 

carefully controlled conditions, it looks 

to me like this method (including the 

autosampler) is operating with 

acceptable precision.

Listen to the Data
John W. Dolan, LC Resources, Lafayette, California, USA.

A stepwise process helps isolate and identify the cause of a method failure.
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Although the %RSD is good when 

comparing samples, I wondered how 

good the precision was for 

the same sample with multiple 

injections. I asked the reader if such 

data were available, and I was 

supplied with the data in Table 2. 

In Table 2, I have shown the results 

for the original data from Table 1 (4a 

and 4b), the reinjection data of the 

same vials (4a-ri and 4b-ri), and the 

transfer data of the contents to 

a new vial before reinjection (4a-nv 

and 4b-nv). I am considering all 4a 

samples to be equivalent and 4b 

samples to be equivalent. You can 

see from the data at the bottom of 

the table that the variability (≤0.5%) 

is approximately the same as it is for 

the between-sample variability for 

the data of Table 1 (0.5%). This 

reinforces the conclusion I drew 

in the previous paragraph that the 

injection process is working properly.

What Is at Fault?

At this point, we’ve observed that 

sample 4 exceeded the maximum 

allowable difference between 

subsamples and confirmed that the 

difference between subsample 4a 

and 4b is indeed an outlier using the 

Dixon’s Q-test. We have also shown 

that the results for both samples 

4a and 4b have the same level of 

precision as the remaining samples, 

so it appears that the problem is not 

related to the injector. Let’s see if we 

can further narrow the source of the 

problem to the primary sample 4 or 

one of the subsamples 4a or 4b. We 

have enough data now that we can 

compare the assay values and see if 

they are consistent.

First, let’s compare sample 4a and 

4b. With the three “equivalent” 

injections for each sample from Table

2, we can see if there is a statistical 

difference between the mean assay 

value of 4a and 4b. 

We do this with the Student’s t-test 

that is available as part of the 

data analysis add-in for Microsoft 

Excel. We select the two-tailed test 

because we want to know if there is a 

difference in the mean values. From 

the six data points in Table 2, we can 

calculate a test value of t = 3.19; for 

a probability α = 0.05, the critical 

value is t = 2.78, so the Student’s t-

test shows that there is indeed a 

significant difference between the 

mean assay values of sample 4a and 

4b. The Excel report (not shown) 

refines this a bit and indicates that 

there is only a 3.3% chance that 

there is not a significant difference in 

means.

Now we know that samples 4a and 

4b are not equivalent. Can we extend 

the process further and decide if 

one or both of them are likely to have 

an error in assay value? We can do 

the same Student’s t-test for sample 

4a and sample 4b compared to 

the remaining samples. One might 

argue that this is stretching the test 

a bit, because the larger data set 

compares variation between samples, 

whereas 4a and 4b test within-sample 

variation, but let’s ignore that for the 

moment and see what we get. First, 

we’ll take the data from Table 1 and 

remove the injections for 4a and 4b, 

leaving 22 data points. Then we’ll take 

the three data points for 4a and run 

the t-test comparison, then repeat it 

for 4b.

When we compare the larger data 

set to sample 4a, we get a test value 
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Figure 1: Frequency distribution of subsample differences from Table 

1, binned into 0.25-unit increments.

Table 1: Percent assay values 

for individual injections of a 

pharmaceutical product.

Sample* % Assay Difference†

1a 86.18
0.49

1b 85.69

2a 86.45
0.45

2b 86.90

3a 86.10
0.55

3b 86.65

4a 86.11
1.41

4b 87.52

5a 85.81
0.14

5b 85.67

6a 86.64
0.73

6b 85.91

7a 86.18
0.14

7b 86.32

8a 86.68
0.24

8b 86.44

9a 86.58
0.07

9b 86.51

10a 86.83
0.59

10b 86.24

11a 86.58
0.45

11b 86.13

12a 86.16
0.19

12b 85.97

Average 86.34

SD 0.42

%RSD 0.5%

*Samples 1–12 are divided into 

subsamples a and b, which should be 

equivalent. †Difference in assay value 

between subsamples a and b of each 

sample. 
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What’s Next?

Now that we’ve identified sample 4b 

as being an outlier, what else can we 

do to track down the source of the 

problem? First, we should eliminate 

the simple and obvious possibilities. 

The ones that come to my mind are 

transcription errors and integration 

errors. If the analytical balance has 

a printer attached, check the printer 

tape to make sure that the weight for 

sample 4b was transcribed correctly 

into the calculation of the assay value. 

For example, the reported weight (not 

shown) was 100.29 mg; if the decimal 

values were reversed in transcription 

from a true value of 100.92, the 

correct weight (100.92 mg) would 

change the 87.52 assay value to 

86.92, and the difference between 

4a and 4b would drop from 1.41% to 

0.86%, and would pass the maximum 

difference test (1.0%) and bring 

sample 4b within 1.5 SD of the mean. 

Another possible error is in integration 

of the peak; double-check that the 

baseline was drawn properly.

At this point, you may feel that 

the investigation is complete. We’ve 

identified sample 4b as an outlier, and 

its companion 4a gives a reasonable 

value. Depending on your laboratory’s 

standard operating procedures 

(SOPs), you may be able to drop 4b 

from the data set and use the data 

from 4a for reporting purposes. Write 

up your investigation report and you 

are done. Of course, you should keep 

your eyes open for similar failures in 

the future to determine if there is a 

of t = 0.76, whereas the critical value 

is t = 2.07. This tells us that there is 

no statistical difference between the 

mean assay value for sample 4a and 

that of the remaining samples. With 

sample 4b, the test value of t = 3.20, 

which exceeds the critical value, 

means we can conclude that there is 

a significant difference between the 

mean assay value for sample 4b and 

the remaining samples. We may get 

a better concept of this if we view 

the data in Figure 3. In Figure 3, I 

have binned all the assay values 

from Table 1 into 0.25% increments. 

As expected, the general form is 

that of a Gaussian distribution, 

which would be the case for a large 

number of points containing random 

error. The mean (bottom of Table 1) 

is 86.34, which falls in the 86.5 

bin. The value for 4a (86.11) falls in 

the 86.25 bin, which confirms what 

we found above: sample 4a is not 

significantly different than the mean 

of the remaining 22 values. The 

value for 4b (87.52), however, falls in 

the 87.5 bin at the extreme right of 

Figure 3. With a standard deviation 

(SD) of 0.42 for the data of Table 1 

this means that 4b is 2.8 SD from the 

mean; for a Gaussian distribution, 

99.4% of the values will fall within 

±2.8 SD of the mean. Contrast this to 

the smallest value of Table 1 (85.67), 

which is 1.6 SD below the mean; 

89% of values should fall within ±1.6 

SD of the mean, so it is much less 

likely that 85.67 is an outlier than is 

87.52.

high enough frequency of failure to 

merit further investigation.

If you want to investigate further, 

you need to consider all the possible 

sources of variation and determine  

if they are potentially important  

and if they can be reduced in 

magnitude. If the sources are 

independent of each other, the 

overall coefficient of variation 

(CV = %RSD/100) can be determined 

as the square root of the sum of 

squares of each variable:

CV = (CV1
2 + CV2

2 + . . . + CVn
2)0.5

[2]

where the subscripts represent 

each independent operation. The 

operations that come to mind in this 

instance are sampling, weighing, 

dilution, mixing, filtration, injection, 

and integration; there are probably 

others I’ve overlooked. Each of these 

will contribute uncertainty to the overall 

measurement. Sampling errors reflect 

how representative the subsamples 

are. For example, if the sample were 

granular sugar or a cup of coffee, the 

primary sample is very homogeneous, 

so taking a random sample should be 

fairly representative of the whole. On 

the other hand, if the sample were a 

bag of M&M candies, the distribution 

of the different colours in a small 

subsample would likely have much 

more variation. Thus, the homogeneity 

of the sample and the ability to take a 

representative sample would influence 

the sampling step. The variation in 

weighing could be tested by weighing 

a fixed standard weight multiple times. 

The reader did not specify how dilution 

Table 2: Data for multiple injections of 

samples 4a and 4b.

Sample* % Assay Sample* % Assay

4a 86.11 4b 87.52

4a-ri 86.33 4b-ri 86.67

4a-nv 85.98 4b-nv 86.87

Average 86.14 Average 87.02

SD 0.18 SD 0.44

%RSD 0.2% %RSD 0.5%

*a and b are original values from Table 

1; ri is a reinjection of the original sample 

from the same vial; nv is a reinjection 

of the original sample after it was 

transferred to a new vial.
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Figure 2: Plot of assay values from Table 1 in injection order.
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was done; however, more uncertainty 

would be expected if a graduated 

cylinder were used to measure the 

liquid as compared to preparing the 

sample in a volumetric flask. Is the 

mixing sufficient for the concentrated 

sample and the diluent? Should 

mixing time be extended, agitation 

or sonication increased, or other 

variations in the mixing process be 

changed to improve the homogeneity 

of the diluted sample? Does filtering 

the sample affect the final result? This 

possible effect could be checked by 

comparing centrifugation to filtering 

and seeing if the results were any 

different. Check the precision of the 

injector by making replicate injections 

of a well-behaved analyte. If errors are 

constant, such as an error of ±0.1 mg 

on the analytical balance, a fixed 

volumetric error with a volumetric flask, 

or ±0.2 µL for sample injection, they 

can usually be reduced by increasing 

the sample mass, dilution volume, 

or injection volume, respectively, to 

reduce the percent contribution of the 

fixed error to the total.

Before embarking on a detailed 

investigation of the method CV, you 

should step back and consider if it 

is likely that you will really improve 

the results of the analysis. A basic 

principle of statistics tells us that for 

independent errors, as in equation 

2, the largest error will have the most 

influence on the overall error, that the 

overall error will never be smaller than 

the error of the largest contribution, 

and that the overall error will usually 

fall between the value of the largest 

error and twice that value. We 

determined in Table 1 that the overall 

method %RSD was 0.5% based on 

single injections of multiple samples. 

An autosampler that is operating well 

should have errors in the range of  

0.3–0.5%, so it is unlikely that the 

overall error can be reduced much 

below the observed value of 0.5%. 

In other words, after a brief mental 

evaluation of the problem, I don’t think 

I’d waste my time trying experiments 

to reduce the overall error. Instead, 

I’d stay alert to see if I could correlate 

future failures to some pattern in the 

analysis.

Conclusions

Let’s review what we’ve been able to 

observe about the present problem:

•	 An error was found when the 

difference in assay values between 

equivalent subsamples exceeded 

the 1.0% threshold.

•	 By evaluating the difference 

between subsamples 4a and 4b 

both visually (Figure 1) and with the 

Dixon’s Q-test, we showed that the 

difference was indeed an outlier 

from the remaining samples.

•	We also concluded from the Q-test 

that the 1.0% threshold may have 

been a bit too tight because, based 

on the current data set, differences 

of 1.0–1.3% would fail the test 

criteria, but would not be proven 

outliers by the Q-test.

•	  Based on multiple injections of 

samples 4a and 4b, we used the 

Student’s t-test to show that there 

was statistical difference between 

the mean assay values of the two 

samples, so they are not equivalent.

•	We also used the t-test to find that 

the assay value for sample 4a 

fit within the normal range of the 

remaining samples, whereas sample 

4b did not. This test correlated the 

cause of the problem with sample 

4b, not 4a.

•	We confirmed the association of the 

problem with sample 4b by plotting 

a frequency distribution of the assay 

values in Figure 3. Sample 4b was 

clearly at the extreme edge of the 

plot, whereas the value for 4a was 

near the middle.

•	 Before concluding the investigation, 

it was suggested that we check 

for obvious errors in numeric 

transcription and peak integration.

•	We mentally evaluated possible 

sources of uncertainty with the 

method and concluded that it was 

unlikely that a thorough investigation 

of these sources would yield 

information that would reduce overall 

uncertainty of the method.

Although the present discussion 

centred on a specific data set, it 

illustrates how we can use simple 

graphic and statistical tools to 

investigate the failure. We were able 

to assign the error to a single sample 

(4b) and demonstrate that its paired 

subsample (4a) behaved in the same 

manner as the remaining samples, so 

it may be possible to use its results to 

obtain reliable assay data.
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Figure 3: Frequency distribution of assay values for all samples from Table 1, 

binned into 0.25% increments.
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