

Worldwide Suppliers of Pneumatic, Fluidic & Medical Components

Industrial Specialties Mfg. & IS MED Specialties

ISO 9001:2015 Certified Companies

Menu

PLASTICS STERILIZATION COMPATIBILITY

Steam Sterilization, also known as autoclaving, involves generating or injecting saturated steam into a pressure chamber at a temperature range of 121-148 °C (250-300 °F) at 15psi for a period of time sufficient to provide sterilization. Some plastics are degraded by autoclaving.

Dry heat sterilization requires a significantly higher temperature than steam sterilization to achieve an equal germicidal effect. Dry heat is generally not suitable for plastics because of their low thermal conductivity as well as the difficulty insuring that the complete part or assembly has been to exposed to enough heat to ensure sterilization.

Ethylene Oxide gas (EtO) is frequently used to sterilize materials that are otherwise too sensitive to heat or radiation sterilization. Many plastics fall into this category and EtO sterilization is frequently used for single use medical devices made of plastic. EtO gas requires careful handling because of its flammability and how poisonous it is. Strict handling requirements and a technically complex sterilization process makes EtO suitable primarily for large volume sterilizations.

lonizing radiation sterilization generally involves irradiation with either gamma rays or high energy electrons. Ionizing radiation affects every polymer's physical and chemical properties but some plastic materials are more resistant than others to degradation from radiation at sterilization doses. The degree and types of changes to a particular plastic depend on the nature of the polymer, whether or not it has had stabilizers added to it during manufacture, the intensity of the radiation used and how long the parts are irradiated.

Sterilizing radiation dosage is measured in either Grays (Gy) or rads (Radiation Absorbed Dose). Sterilizing radiation intensity for industrial sterilization is usually measured in either Roentgens (R) or else Coulombs (C) per unit mass.

Gamma irradiation is an ionizing radiation sterilization technique that involves exposing materials for sterilization to gamma rays. Cobalt-60 is the most common gamma radiation source used for industrial ionizing radiation sterilization.

Electron beam or E-Beam sterilization is another widely used ionizing radiation sterilization technology. High energy electron beams generate a higher dose rate than gamma irradiation. This reduces exposure time necessary for sterilization which results in less chemical degradation. Electron beam irradiation has significantly lower penetrating power than gamma rays making the density of the material being sterilized an important consideration.

Download PDF

Plastics Sterilization Co	ompatibility Char	t				
Polymer	Polymer Abbreviation	Autoclave	Dry Heat	Ethylene Oxide (EtO)	Gamma Irradiation	Electron Beam

	Biop	olymers	10 17			
Polycaprolactone	PCL	Fair	Good	Good	Good	Good
Polyglycolic acid	PGA	Good	Good	Good	Good	Good
Polyhydroxybutyrate	PHB	Poor	Poor	Good	Fair	Fair
Poly(L-lactide)	PLLA	Fair	Good	Good	Good	Good
Poly(lactic-co-glycolic acid)	PLGA	Poor	Poor	Good	Fair	Fair
Polylactic acid	PLA	Poor	Fair	Good	Good	Good
	•					•

	Elas	stomers				
Copolyester thermoplastic elastomer	TPC	Poor	Good	Good	Good	Good
Ethylene propylene (diene-) terpolymer	EPDM	Good	Good	Good	Good	Good
Olefinic thermoplastic elastomer	TPO	Poor	Fair	Good	Good	Good
Polyamide thermoplastic elastomer	TPA	Poor	Poor	Good	Good	Good
Silicones		Good	Good	Good	Good	Good
Styrenic thermoplastic elastomer	TPS	Poor	Poor	Good	Good	Good
Urethane thermoplastic elastomer	TPU	Poor	Fair	Good	Good	Good

	Flurop	olymers	10. 12			778
Chlorotrifluoroethylenevinylidene fluoride	FKM / FPM	Poor	Good	Poor	Poor	Poor
Ethylene chlorotrifluoroethylene	ECTFE	Good	Good	Good	Good	Good
Ethylene tetrafluoroethylene	ETFE	Good	Good	Good	Good	Good
Fluorinated ethylene propylene	FEP	Good	Good	Good	Fair	Fair
Perfluoro alkoxy	PFA	Good	Good	Good	Good	Good
Polytetrafluoroethylene ¹	PTFE	Fair	Fair	Good	Poor	Poor
Polyvinyl fluoride	PVF	Good	Good	Good	Good	Good
Polyvinylidene difluoride	PVF2	Good	Good	Good	Good	Good

	High-temperat	ure thermor	plastics			
Liquid crystaline polymer	LCP	Good	Good	Good	Good	Good
Polyamide-imide	PAI	Fair	Fair	Good	Good	Good
Polyetheretherketone	PEEK	Good	Good	Good	Good	Good
Polyetherimide	PEI	Fair	Fair	Good	Good	Good
Polyphenylene sulfide	PPS	Good	Good	Good	Good	Good
Polysulfones	PSU	Good	Good	Good	Good	Good

	Poly	amides				
Aromatic		Good	Good	Good	Good	Good
Nylon 6, Nylon 66	PA6, PA66	Fair	Fair	Good	Fair	Fair
Nylon 12, 6/12	PA12	Poor	Poor	Good	Fair	Fair

	Po	lyesters				
Copolyesters	4	Poor	Poor	Good	Good	Good
Poly butylene terephthalate	PBT	Fair	Fair	Good	Good	Good
Poly ethylene terephthalate	PET	Poor	Poor	Good	Good	Good
			1			

	Poly	oletins	12			
Cyclo olefin copolymer	COC	Fair	Fair	Good	Good	Good
High-density polyethylene	HDPE	Poor	Poor	Good	Good	Good
Low-density polyethylene	LDPE	Poor	Poor	Good	Good	Good
Polypropylene ¹	PP	Good	Fair	Good	Fair	Fair
Polypropylene copolymers		Good	Fair	Good	Fair	Fair
Polyvinyl chloride plasticized ^{1,2}	PVC	Fair	Fair	Good	Good	Good
Polyvinyl chloride unplasticized ^{1,2}	PVC	Poor	Poor	Good	Fair	Fair
Ultrahigh molecular weight polyethylene	UHMWPE	Poor	Poor	Good	Good	Good

	Polystyre	ene/styrenic	s			
Acetals	POM	Good	Good	Good	Poor	Poor
Acrylics ^{1,2}		Poor	Poor	Good	Good	Good
Acrylonitrile butadiene styrene copolymer (Abs)	ABS	Poor	Poor	Good	Good	Good
Acrylonitrile styrene acrylate	ASA	Poor	Poor	Good	Good	Good
High heat polycarbonates		Good	Good	Good	Good	Good
Methacrylate acrylonitrile butadiene styrene copolymer	MABS	Poor	Poor	Good	Good	Good
Polycarbonates ^{1,2}		Fair	Fair	Good	Good	Good
Polystyrene	PS	Poor	Poor	Good	Good	Good

Polyurethanes		Poor	Poor	Good	Good	Good
Styrene-acrylonitrile copolymer (San)	SAN	Poor	Poor	Good	Good	Good
Styrene-butadiene copolymer	SBC	Poor	Poor	Good	Good	Good
Radiation stable grades need to be used for ra	diation sterilizatio	n				
¹ Radiation stable grades need to be used for ra	diation sterilizatio	n.				

The information contained in this document is intended to provide guidelines for reference only. We do not make any sort or warranty, express, implied or otherwise as to the performance of any materials with respect to sterilization or any other use. It is the responsibility of the user or engineer to evaluate all materials and processes for suitability of use, from a technical and legal perspective.

