

Chromatography Products

Explaining the Small Particle Advantage

Faster Sample Throughput on a 1.9µm Pinnacle™ DB Column

- Faster analyses, uncompromised chromatography using a 1.9µm Pinnacle™ DB small
- · Narrow particle size distribution ensures consistent, high efficiencies and longer column
- 100% Restek manufactured-from base silica to final packed column—assures quality and reliability.

Restek is pleased to introduce an exciting new addition to our family of HPLC columns—the $1.9\mu m\ Pinnacle^{TM}\ DB\ small\ particle\ column.$ Intended for use in ultra-high pressure liquid separations, the $1.9\mu m\ Pinnacle^{TM}\ DB\ column\ combines\ the\ benefits\ of\ a\ novel\ technique\ with\ the\ unmatched\ quality\ you\ expect\ from\ Restek.$ From the manufacturing of the base silica through the packing of the column, Restek performs and tightly controls every step in the manufacturing\ process, guaranteeing\ ruggedness\ and\ reliability. Here we discuss\ how\ and\ why\ small\ particle\ HPLC\ columns\ work,\ and\ demonstrate\ the\ high\ efficiency,\ excellent\ peak\ symmetry,\ and\ fast\ analysis\ times\ that\ can\ be\ achieved\ on\ the\ 1.9\mu m\ Pinnacle^{TM}\ DB\ column.

In HPLC column terminology, particle size refers to the mean diameter of the silica spheres used as the support material to which the stationary phase is bonded. Until recently, the practical particle size limit was around $3\mu m$; smaller particle sizes resulted in backpressures above the limit of conventional LC systems. The advent of LC systems capable of handling higher backpressures (>10000psi) now allows chromatographers to realize the benefits of sub- $2\mu m$ particle size columns. Smaller particles give rise to greater column efficiencies and a wider range of usable flow rates, resulting in better resolution and higher sensitivity with a significantly faster overall analysis time. **Figure 1** and **Table 1** illustrate the excellent peak shape and higher efficiency commonly seen when using a $1.9\mu m$ PinnacleTM DB C18 column, compared to competitive columns.

To demonstrate the substantial gain in sample throughput that is possible on a small particle column, we assayed a series of parabens under identical conditions on both a C18 column with conventional dimensions and on a 1.9 μ m PinnacleTM DB C18 column (**Figure 2**). When comparing the two columns, similar resolution was achieved in a much shorter analysis time on the 1.9 μ m PinnacleTM DB C18 column. Next, we doubled the flow rate and assayed the same mix. The resolution and peak efficiencies again were comparable, but the analysis time was cut in half.

This illustrates the considerable effect that small particles can have on chromatographic separations; a much wider range of usable flow rates translates into significantly faster analysis times—in this case 10-fold faster, with no loss in chromatographic quality.

The particle size of an HPLC column is actually the mean of the distribution of all particles used in the manufacturing of the column. In practice, the smaller the particle size distribution, the more uniformly packed the column will be, resulting in higher efficiencies. This distribution is even more critical when manufacturing columns with particle sizes less than $2\mu m$. If the distribution contains many larger particles and is not

tightly controlled, the efficiency of the column will suffer and column-to-column reproducibility will vary.

More importantly, if the column contains particles less than 1µm (termed "fines"), clogging of the column frit

and unwanted column backpressure can result. Restek's 1.9µm Pinnacle™ DB columns have narrow, symmetric particle size distributions, containing no particles less than 1µm in diameter. **Figure 3** illustrates

this exceptional distribution, which is tighter and more accurate than competitive sub-2µm

RESTEK PRODUCTS

► HPLC Columns Small Particle HPLC Columns

ALSO OF INTEREST

- Separating NSAIDs through Aromatic Selectivity
- New pHidelity pHStable HPLC
- Columns

Organic Volatile

Impurities: Retention Time Index

Revised USP 467 Residual Solvent Method

View all articles

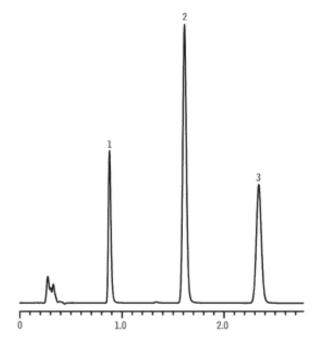

column made entirely by chromatographers for chromatographers, reach for Restek small particle HPLC columns.

Table 1 Restek's $1.9\mu m$ PinnacleTM DB offers the highest efficiency of all columns tested (data from the biphenyl peak of a reversed phase test mix).

Column	Efficiency (n/m)	Pressure (psi)	Asymmetry
1.9µm Pinnacle™ DB	217,619	4,500	1.10
Competitor A	177,999	4,400	1.13
Competitor B	188,508	4,300	1.09

Figure 1 Excellent peak symmetry and efficiency on a 1.9μm Pinnacle[™] DB C18 column, using a reversed phase test mix.

1. uracil 3.00mg/mL Performance: (calculations for biphenyl) 2. benzene 0.02mg/mL Efficiency: 217,619n/m 0.50mg/mL 3. naphthalene Asymmetry: 1.10 Pressure: 4. biphenyl 0.06mg/mL 4,500psi

Sample:

Inj.: 2µL

Sample diluent: water: methanol (25:75)

Sample temp: ambient

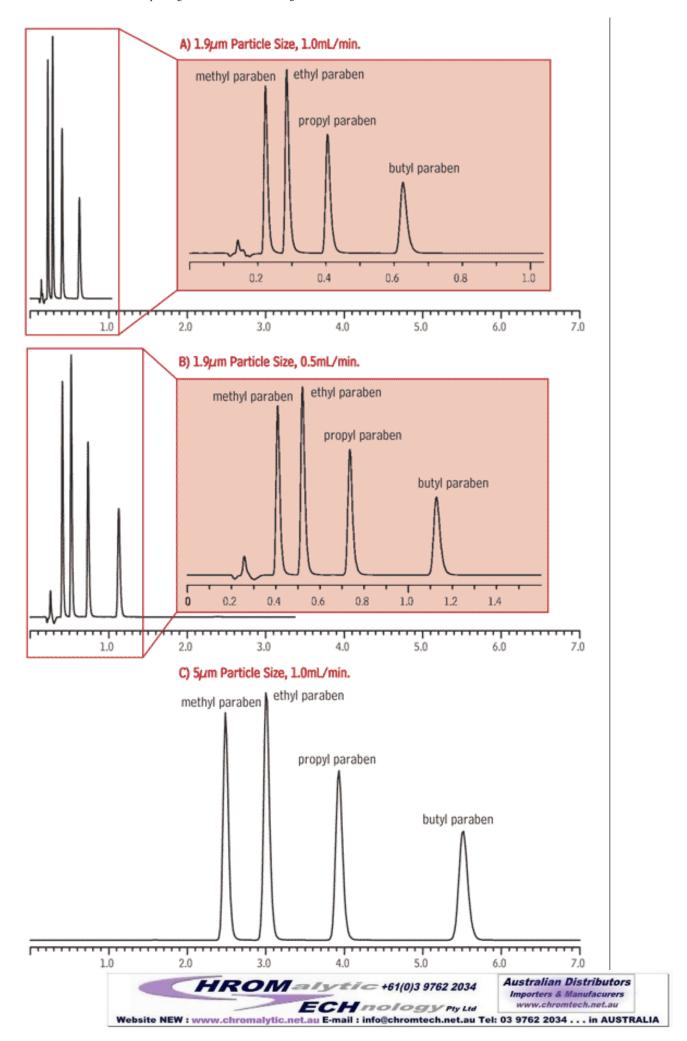
Column: Pinnacle[™] DB C18

 $\begin{array}{lll} \text{Cat.\#:} & 9414252 \\ \text{Dimensions:} & 50 \text{ x 2.1mm} \\ \text{Particle size:} & 1.9 \mu\text{m} \\ \text{Pore size:} & 140 \text{Å} \end{array}$

Conditions:

Mobile phase: water:acetonitrile (45:55)

 Flow:
 0.4mL/min.


 Temp.:
 25°C (or ambient)

 Det.:
 UV @ 254nm

LC_EX0427

Figure 2 Restek's $1.9\mu m$ PinnacleTM DB columns can dramatically increase sample throughput—with no loss in resolution.

Column: A. Pinnacle™ DB C18, 1.9µm 50 x 2.1mm (cat.#

9414252)

B. PinnacleTM DB C18, 1.9 μ m 50 x 2.1mm (cat.#

Inj.: A. 2µL (each compound 100µg/mL mobile

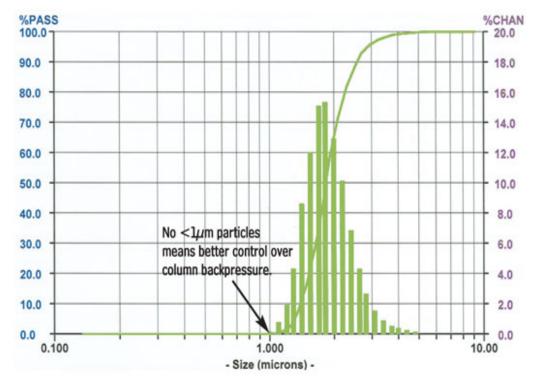
phase)

B. 2µL (each compound 100µg/mL mobile phase) 50:50 0.1% acetic acid:acetonitrile

Flow: A. 1.0mL/

min.

B. 0.5mL/


Temp.: ambient Det.: UV @

Δ

LC_PH0437

В.

Figure 3 Pinnacle[™] DB silica particle size distribution shows an exceptionally accurate mean and a tight, symmetrical distribution around 1.9µm; no <1µm particles are present, for protection against excessive

Column	Target Particle Size (µm)	Actual Mean Particle	Standard Deviation	Particles Present <1µm
1.9µm Pinnacle™	1.9	1.952	0.437	no
Competitor	1.7	1.993	0.529	no
Competitor	1.8	1.832	0.468	yes