Using Computer Modeling for the Development of Gas Chromatographic Stationary Phases and Columns

Frank L. Dorman, Paul D. Schettler, and Chris English

Restek Corporation www.restekcorp.com

"Old Days of GC"

- Chromatography has become a "history lesson" rather than a science
- Applications compromised to fit existing columns and stationary phases
- Most phases not designed with any application in mind
- Marketing based on "subtle" differences

Future of GC

- Columns and stationary phases designed around applications
- Potential for specific phase and column for an individual separation
- Marketing based on real differences
- Requires understanding of analyte-phase interactions
- Can this be done economically?

Stationary Phase Optimization Techniques

- Window diagramming
- Computer simulation of Rt and W1/2 (ezGCTM)
- Computer prediction of optimized stationary phase composition and column dimensions
- Computer prediction of solute/stationary phase interactions for new polymer designs

How Resolution Affects Quantitation VRX phase

Results of Resolution Tests @ 20ppb

MeCl ₂ & Freon 113	Rep 1	19.85	18.48
	Rep 2	19.29	18.48
	Rep 3	19.36	18.52
Methylene Chloride	Rep 1	21.48	
	Rep 2	20.79	
	Rep 3	20.95	
Freon 113	Rep 1		16.3
	Rep 2		16.46
	Rep 3		16.25

Equations and Terms

Resolution
$$R = 1/4 \sqrt{L/h} \times (k/k+1) \times (\alpha-1/\alpha)$$

Capacity Factor
$$k = t_R - t_0 / t_0$$

Selectivity
$$\alpha = k_2 / k_1$$

Stationary Phase Optimization

- Window diagramming (Rtx-502.2)
- Computer simulation of selectivity, independent of Rt and $W_{1/2}$ (ezGCTM)
 - Rtx®-CLPesticides, Rtx-CLPesticides2
- Computer prediction of optimized stationary phase composition and column dimensions
 - Rtx-TNT, Rtx-TNT2, Rtx-VMS, Rtx-VGC, Rtx-5SilMS, Rtx-VRX
- Computer prediction of solute/stationary phase interactions for new polymer designs

"Window Diagram" Model

Stationary Phase Optimization

- Window diagramming
- Computer simulation of Rt and W_{1/2} (ezGC)
 - Rtx®-CLPesticides, Rtx-CLPesticides2
- Computer prediction of optimized stationary phase composition and column dimensions
 - Rtx®-CLPesticides, Rtx-CLPesticides2, Rtx-TNT Rtx-TNT2, Rtx-VMS, Rtx-VGC, Rtx-5SilMS, Rtx-VRX
- Computer prediction of solute/stationary phase interactions for new polymer designs

3-Space Selectivity Model for 3 Compounds

Stationary Phase Optimization

- Window diagramming
- Computer simulation of Rt and $W_{1/2}$ (ezGC)
- Rtx®-CLPesticides, Rtx-CLPesticides2
- Computer prediction of optimized stationary phase composition AND column dimensions
 - Rtx-TNT Rtx-TNT2, Rtx-VMS, Rtx-VGC, Rtx-5SilMS, Rtx-VRX, Rtx-OPPesticides2, Customer-specific columns
- Computer prediction of solute/stationary phase interactions for new polymer designs

Process for Rtx-OPPesticides2 Column

- Acquire data for target compounds under two temperature programs for functionalities displaying selectivity
- Computer Assisted Stationary Phase Design (CASPD)
 - Calculate ΔH and ΔS for each compound
 - Working in Retention Index, perform optimization of Selectivity and Dimensions
- Synthesize and coat column

3-Space Selectivity Model for 3 Compounds

Compounds 1 - 25 of 53 OP Pesticides

Target	Predicted	Actual	Difference
Compound	Rt	Rt	(min)
dichlorvos	4.08	4.05	-0.03
НМРА	4.70	4.70	0.00
mevinphos	6.43	6.34	-0.09
trichlorfon	6.44	6.43	-0.01
TEPP	8.20	8.40	0.20
demeton-o	8.46	8.52	0.06
thionazin	8.58	8.52	-0.06
TBP	8.60	8.52	-0.08
ethoprop	8.84	8.74	-0.10
naled	9.34	9.32	-0.02
sulfotepp	9.42	9.56	0.14
phorate	9.53	9.56	0.03
dicrotophos	9.61	9.59	-0.02
monocrotophos	9.70	9.62	-0.08
demeton-s	9.80	9.62	-0.18
terbufos	10.44	10.32	-0.12
dimethoate	10.67	10.62	-0.05
dioxathion	10.78	10.77	-0.01
fonophos	10.91	10.79	-0.11
diazinon	10.93	10.90	-0.04
disulfoton	11.13	11.09	-0.03
phosph isomer	11.19	11.16	-0.04
dichlorofenthion	11.38	11.37	-0.01
chlorpyrifos methyl	11.94	12.03	0.09
phosphamidon	12.14	12.03	-0.11

Individual Custom Column?

- Customer contacted us about custom column for separation of volatile silanes and hydrocarbons
- Customer provided data on Rtx-1 Rtx-35, and Rtx-200 under two different temperature programs
- Data was input to CASPD, and phase was successfully predicted and developed

CASPD 2.2 Output Table

Col ID	# failures	# rel fails	run time(m	L(m)	d0 (mm)	fd(um)	pi (psig)	po (psia)	td (sec)	T-td(C)	T Prog #	Funct. A	Funct. B
RL321	0	0	31.67	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1847	0.8153
RL395	0	0	31.67	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1845	0.8155
RL369	0	0	31.67	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1843	0.8157
RL443	0	0	31.67	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1843	0.8157
RL623	0	0	31.67	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1841	0.8159
RL836	0	0	31.67	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1841	0.8159
RL724	0	0	31.67	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1839	0.8161
RL199	0	0	31.70	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1550	0.8450
RL93	0	0	31.70	90	0.32	1.8	15	14.7	529.1	35.0	4	0.1550	0.8450
RL52	1	1	31.65	90	0.32	1.8	15	14.7	529.1	35.0	4	0.2102	0.7898
RL1010	3	3	31.78	90	0.32	1.8	15	14.7	529.1	35.0	4	0.0659	0.9341

What If No Selective Functionality Can be Found?

- Accept less than ideal separation
 - Effect on quantitation and/or run time
- Use "old method" of trial and error
 - Slow, and inefficient
 - No guarantee that solution will be found
- Test functionalities electronically
 - Unproven technique
 - CPU intensive
 - Fast

Conventional Stationary Phases Used for Capillary GC

trifluoropropylmethyl polysiloxane

dimethyl polysiloxane

Conventional Stationary Phases Used for Capillary GC

diphenyl polysiloxane

cyanopropylphenyl polysiloxane

Alternative Stationary Phases Used for Capillary GC

biphenyl polysiloxane

pentafluorophenyl polysiloxane

Alternative Stationary Phases Used for Capillary GC

Silarylene

Silbiarylene

Stationary Phase Optimization

- Window diagramming
- Computer simulation of Rt and $W_{1/2}$ (ezGC)
- Computer prediction of optimized stationary phase composition and column dimensions
 - Rtx®-CLPesticides Rtx-CLPesticides2, Rtx-TNT Rtx-TNT2, Rtx-VMS, Rtx-VGC, Rtx-5SilMS, Rtx-VRX
- Computer prediction of solute/stationary phase interactions for new polymer designs

Achieving Analyte Separation

Resolution
$$R = 1/4 \sqrt{L/h} \times (k/k+1) \times (\alpha-1/\alpha)$$

Capacity Factor
$$k = (t_R - t_0) / t_0$$

Selectivity
$$\alpha = k_2 / k_1$$

Thermodynamics:
$$\Delta G = \Delta H - T\Delta S$$
 $\Delta G = RT \ln K_D$

Modeling - Energies of Interaction

F O F Cl O Cl Cl F O Cl
$$\Delta G$$
 Cl O Cl Cl ΔG Cl O Cl ΔG Cl O Cl ΔG F Separation $(\Delta \alpha) = \Delta \Delta G$

Summary

- Column optimization program complete
- Allowed for 10 new phases over last three years
- Individual customer columns possible:
 - Cost of polymer synthesis (1-5 K\$ typical) one time fee
 - Custom column cost
- Development of program to electronically "test" possible future functionalities underway